Modeling and Rendering of Points with Local Geometry
نویسندگان
چکیده
We present a novel rendering primitive that combines the modeling brevity of points with the rasterization efficiency of polygons. The surface is represented by a sampled collection of Differential Points (DP), each with embedded curvature information that captures the local differential geometry in the vicinity of that point. This is a more general point representation that, for the cost of a few additional bytes, packs much more information per point than the traditional point-based models. This information is used to efficiently render the surface as a collection of local geometries. To use the hardware acceleration, the DPs are quantized into 256 different types and each sampled point is approximated by the closest quantized DP and is rendered as a normal-mapped rectangle. The advantages to this representation are: (1) the surface can be represented more sparsely compared to other point primitives, (2) it achieves a robust hardware accelerated per-pixel shading – even with no connectivity information, and (3) it offers a novel point-based simplification technique that factors in the complexity of the local geometry. The number of primitives being equal, DPs produce a much better quality of rendering than a pure splat-based approach. Visual appearances being similar, DPs are about two times faster and require about 75% less disk space in comparison to splatting primitives.
منابع مشابه
Local and Global Approaches to Fracture Mechanics Using Isogeometric Analysis Method
The present research investigates the implementations of different computational geometry technologies in isogeometric analysis framework for computational fracture mechanics. NURBS and T-splines are two different computational geometry technologies which are studied in this work. Among the features of B-spline basis functions, the possibility of enhancing a B-spline basis with discontinuities ...
متن کاملDifferential Rendering of Unorganized Points
Point sets from range scanners are noisy and do not contain additional data such as normals, which makes it difficult to create a mesh for rendering. We use the moving least-squares (MLS) approximation to get normals and differential information, and approximate the surface near each point by an MLS surface. From this we obtain a splat of a new octagonal shape which approximates the local curva...
متن کاملPoints Reloaded: Point-Based Rendering Revisited
The increasing popularity of points as rendering primitives has led to a variety of different rendering algorithms, and in particular the different implementations compare like apples to oranges. In this paper we revisit a number of recently developed point-based rendering implementations. We briefly summarize a few proposed hierarchical multiresolution point data structures and their advantage...
متن کاملHigh Quality Point-Based Rendering System
In recent years point-based geometry has gained increasing attention as an alternative surface representation, both for efficient rendering and for flexible geometry processing of highly complex 3D-models. Based on their fundamental simplicity, points have motivated a variety of research on topics such as shape modeling, object capturing, simplification, rendering and hybrid point-polygon metho...
متن کاملNear Pole Polar Diagram of Points and its Duality with Applications
In this paper we propose a new approach to plane partitioning with similar features to those of Polar Diagram, but we assume that the pole is close to the sites. The result is a new tessellation of the plane in regions called Near Pole Polar Diagram NPPD. Here we define the (NPPD) of points, the dual and the Contracted dual of it, present an optimal algorithms to draw them and discuss the appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Vis. Comput. Graph.
دوره 9 شماره
صفحات -
تاریخ انتشار 2003